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Abstract
Since the beginning of the past century many proposals for relativistic
transformations in thermodynamics have been suggested. A general consensus
about this matter has not been reached. In this work, we propose a scheme
of thermodynamic relativistic transformations inspired by the Planck–Einstein
theory, but changing the relativistic transformation of energy. This change
permits the form invariance of thermodynamics. Also by means of finite-
time thermodynamics we demonstrate the relativistic invariance of thermal
efficiency.

PACS numbers: 05.70.−a, 95.30.Tg

1. Introduction

Since Planck–Einstein [1] (PE) relativistic thermodynamics appeared, little attention has been
paid to it. Indeed, as Tolman [2] mentioned: ‘The common lack of familiarity with this branch
of relativity has doubtless been due to the absence of physical situations where its applications
were necessary’. In 1963, Ott [5] presented a new proposal which fundamentally differed from
the previous one concerning the temperature transformation. As a consequence of this, an
innumerable set of contributions appeared during the 1960s with different transformation laws.
At the end of the 1960s, Balescu [14] claimed the validity of the PE proposal by correcting Ott’s
[5] method and by showing the non-invariant form of the other theories. Nowadays, stationary
astrophysical situations revive the subject. Nevertheless, the temperature transformation of
special relativity is still being discussed. Landsberg [3] asserted that no consensus has emerged,
except that the law has the form

T = T (u) = [γ (u)]a T (0) = [γ (u)]a To = γ aTo and dQ = γ a dQo, (1)

where

γ = γ (u) =
[

1 − u2

c2

]− 1
2
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and with T and Q representing the temperature and the heat, respectively. The subscript o

refers to the function measured in the proper frame, and we are just considering motion of the
frame in the x axis. Here ‘a’ (the Balescu parameter) is not known with certainty and a = −1
if the Planck–Einstein [1] (PE) proposal is used, a = 0 for the Landsberg [4] (L) one and a = 1
under the Ott [5] (O) considerations. Recently, considering the directional temperature [7] and
integrating the planckian spectrum over the solid angle, Landsberg and Matsas [6] concluded
the non-existence of a universal and continuous temperature relativistic transformation since
the result is proportional to the excitation rate of the Unruh–DeWitt [8] detector instead of a
typical black-body radiation spectrum. Nevertheless, Sieniutycz [9] still remarks that some
authors conclude that equilibrium statistical mechanics cannot provide an unambiguous answer
to the relativistic transformation formulae of thermodynamic quantities and, therefore, all of
the three kinds of transformations are acceptable. However, it is interesting to note that the
three Rorhlich’s proposals [10], the so-called apparent [AR], true or covariant [TR] and light
[LR] transformations, respectively, have to be taken into account within this debate. Although
Rorhlich’s treatment of this problem is not complete, one of these last proposals, the AR one,
would partially coincide with our proposal AA that we will present in this paper.

In order to show the ambiguity claimed by Sieniutycz [9] and to introduce the time
dependence in the theory, section 2 will be advocated to show the invariance of the thermal
efficiency of a heat engine, for any working regime for any heat-transfer law independently
of the temperature transformation we choose. This will be realized with the aid of the so-
called ‘g’ function of finite-time thermodynamics (FTT) [11, 12]. As a consequence of this,
the law of transformation for the work will possess an exact differential for any value of
the Balescu [14] parameter ‘a’. This last result encourages us to analyse the possibility of
changing the PE proposal. Section 3 will be dedicated to discuss the existence or not of a
temperature transformation. We start by taking into account the work realized by Landsberg
and Matsas [6], where by using the directional temperature [7], the excitation rate of the
Unruh–DeWitt detector was obtained for the radiation emitted by a black body which is
observed from a moving frame with respect to it. By integrating this result over all the
frequencies, we obtain the Stefan–Boltzmann law. So we note that there is no impediment to
consider a relativistic temperature transformation. We conclude that the black-body radiation
is no longer isotropic looked from a moving system as can be expected. A discussion about
the validity of the transformation law for the internal energy is open. Section 4 is devoted
to deduce the parameter ‘a’ by using the free expansion of an ideal gas, obtaining a = −1.
In section 5, the PE-transformation law for the energy is questioned since, if it is true, the
invariant form of thermodynamics will no longer be valid. Particularly, starting from the
relation between the Helmholtz free energy and the internal energy, it will be shown that the
invariant form of thermodynamics will not be conserved. The same situation will occur with
the energy density. We will correct this inconvenience by using a method coming from an
idea described in section 3 which we will call the renormalization of thermodynamics. In
section 6, we explore the validity rank of our AA proposal leading us to constrain the size of
the system with respect the time evolution of it for the sake of applicability of the theory. The
simultaneity effect will fundamentally constrain the theory. An analysis of a covariant theory
will be exposed in section 7. Rohrlich’s concepts, about the volume transformation, will be
exposed leading us to discuss the enthalpy as a 0 component of a 4-vector linear momentum
in thermodynamics and the renormalization process will be used in general. Finally, in the
concluding remarks (section 8), we present the final result showing that the transformation
law is simple for renormalized quantities.

It must be pointed out that the purpose of this paper is to construct a relativistic
transformation law in order to obtain an invariant form of relativistic thermodynamics. We
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avoid, as Balescu suggests, all kind of tricks as slow accelerations. We also respect Landau’s
[15] concept that a thermodynamic system must consist of bodies which move in whole
translation or rotation, concepts that are not considered in many treatments of this question.

2. Invariance of the efficiency

With the purpose of introducing us to the problem, we will analyse a situation where the
ambiguity cited above about the value of ‘a’ is present. Some thermodynamic functions
are relativistic invariants, as the pressure and the entropy [2]. Using equation (1), we will
demonstrate that the efficiency is a relativistic invariant for any performance regime of a
thermal cycle. Indeed, if we consider the transformation of the work for any ‘a’, we have

dW = γ a dWo + ϕ dζ, (2)

where ϕ dζ represents a differential form of thermodynamic variables. This differential form
will be different for each proposal. Indeed, as we will see at the end of the paper, together
with the concept of Lorentz contraction, they will represent the source of our proposal. The
efficiency η of any cyclic process will be described by

η = W

Q
= γ aWo +

∫ The cycle
ϕ dζ

γ aQo

, (3)

with W being the work performed by the working substance along the cycle and Q the absorbed
heat. If and only if ϕ dζ is an exact differential we can ensure that the efficiency is a relativistic
invariant. For the PE model [1] (‘a = −1’), the work transforms in a non-invariant form [2]:

dW = γ −1 dWo − γ
u2

c2
d(Eo + PoVo), (4)

where W,E,P and V represent the work, the internal energy, the pressure and the volume,
respectively. In this case, ϕ dζ results to be an exact differential and the integral in equation
(3) vanishes and consequently the efficiency results in a relativistic invariant. Nevertheless,
we cannot ensure that the invariance is present for any transformation law. On the other hand,
although Balescu [14] has developed a statistical mechanics where he claims to prove the
consistency of the PE proposal [1] with the invariance of the form for classical thermodynamics
(we will see that there is a mistake in this assertion), the other proposals allow us to write
all these formalisms in the same invariant form as derived by Planck [1] by using simple
gauge transformations. Balescu commented that: ‘the degeneracy found here may well be
due to the fact that in equilibrium theory one main ingredient of relativity—time—does not
appear’. During the last three decades a finite-time thermodynamics (FTT) [12] has been
developed. One of the main achievements of FTT has been to formulate heat engine models
under more realistic conditions than those of classical equilibrium thermodynamics. We
believe it represents an excellent frame to study the relativistic transformations if, as Balescu
claimed, the time must be included. In this order of ideas, by using FTT, this section will be
advocated to demonstrate that the efficiency is an invariant no matter which transformation
law is used, that is, for any value of the Balescu parameter ‘a’.

The problem of analysing a thermodynamical system by means of relativistic
transformations has always been outlined for equilibrium states where we can assign a well-
defined value for each thermodynamical function. However, this approach has some problems;
for example, due to the simultaneity concept in relativity, for a time-dependent process different
values of the temperature can be considered. We will leave this issue to be analysed in section
6 where we will constrain the applicability of the theory.
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First of all it has to be noted that it is straightforward to demonstrate that a Carnot cycle in
a proper frame transforms to another Carnot cycle when it is observed from a moving frame.
As a consequence of this and by using equation (1) the efficiency turns out to be also an
invariant independent of the value of ‘a’.

The so-called Curzon and Albhorn cycle (CA) [13] is a typical FTT model evolving
at finite rates, and including entropy production. In this order of ideas, it is interesting to
study its efficiency. The most simple endoreversible thermodynamic system consists of two
reservoirs at temperatures T1 and T2 (T1 > T2) and two thermal resistances with the same
thermal conductances connected with a Carnot engine. When we analyse the efficiency at the
maximum power regime also turns out to be [13] an invariant.

The last examples encourage us to think that the invariance of the efficiency is independent
of the form of the relativistic transformation. De Vos [12] and separately Arias-Hernández
and Angulo-Brown [11] have developed the so-called ‘g’ function [11], which permits one
to obtain a general expression for the engine’s power output independent of any heat-transfer
law. Indeed, if we refer to the so-called g function [11] , we will be able to demonstrate the
general scalar behaviour of the efficiency. This g function has been constructed using the first
and second laws of thermodynamics and it represents an excellent choice to test the viability
of our proposal. g(η) is given by [11]

g(η) = T1T2η

T1 − T2 − ηT1
. (5)

For a thermodynamic cycle working between two reservoirs, the power output � and the
universe’s entropy production σ for any working regime are related by [11]:

� = Q1 − Q2

�t
= g(η)σ = T1T2η

T1 − T2 − ηT1
σ, (6)

with Q1 and Q2 being the heats entering and leaving the working fluid, respectively, and
where �t represents the cycle period. From equations (6) and (1), it is clear that � and σ

transform as γ a−1 and γ −1, respectively, and therefore g must transform as γ a . From equation
(5), we immediately conclude that η is a relativistic invariant, for any working regime of the
cycle (such as the maximum power regime, the ecological regime [11] and others). This will
imply that the relativistic transformation law for the work will be of the form described by
equation (2) with the property that ϕ dζ is an exact differential for any value of the parameter
‘a’. As we have mentioned in the introduction, in the case of the PE proposal the existence
of an exact differential will be the source of much confusion. Although we have proved
that the efficiency is invariant for a two-reservoir system, it is clear that for other kinds of
thermodynamic cycles the result will persist. Thus, we can conclude that the efficiency is
invariant for any transformation law, even if the processes are time dependent. An interesting
fact is that FTT predicts that the efficiency is an invariant and as a consequence of this the
transformation for the work will always be followed by an exact differential.

As a first comment, we can ensure that any new temperature transformation has to include
an exact differential form of thermodynamic quantities which will not realize any work during
a cycle. This permits some freedom in the sense that any proposal to which an exact differential
is added, will give the same final work of the system and from a thermodynamical point of
view will be equivalent. In this sense, the set of possibilities is open since any proposal could
be modified just by adding an exact differential. This kind of gauge theory is similar to the one
proposed by Balescu [14], but as he claimed the only one which preserves the invariant form
of classical thermodynamics is the PE proposal. Nevertheless, in section 5, we will observe
that this invariance is not quite exact as Balescu asserts.
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Secondly, the existence of a new term in the transformation of the work suggests to us that
there is a hidden covariant form included in the theory. Indeed, this has been proposed in many
articles leading to different proposals. The interesting work realized by Ott [5] incorporates
this idea which gives a different proposal than the PE one [1]. An interesting result can be
found in a paper of Rohrlich [10] where an analogy with classical electrodynamics is made.
An analysis of this will be realized in section 7.

3. Black-body radiation

In the previous section we pointed out the ambiguity for the choice of the Balescu parameter
‘a’, as the law of transformation was just a matter of convention. Nevertheless, a question
has to be answered: that is, the physical validity of defining a transformation law. Indeed,
Landsberg and Matsas [6] claimed the non-existence of such a transformation. The reasoning
is as follows: starting by considering a black body at rest in a system Ko at temperature To,
the particle number density is a Planckian leading to a Stefan–Boltzmann law after integrating
over all the solid angle and over all the frequencies. When the black body is observed from a
moving frame K, the particle number density is [6, 7]

n(w, Tθ ) dw d	 = w2/c3

2π2
((

exp h̄w
kTθ

) − 1
) dw d	, (7)

where Tθ denotes the directional temperature defined as

Tθ =
To

√
1 − u2

c2

1 − u
c

cos θ
, (8)

with To, u, θ , being the temperature in the system Ko, the speed between both frames and the
angle between the axis of motion and the direction of observation in the frame K, respectively.
The result of integrating the particle number density over all the solid angle and considering
the two independent polarizations gives

n(w, To, u) dw =
wkTo

√
1 − u2

c2

2π2c2uh̄
ln

1 − exp −
(

h̄w
√

1+ u
c

kTo

√
1− u

c

)

1 − exp −
(

h̄w
√

1− u
c

kTo

√
1+ u

c

) dw, (9)

which is proportional to the excitation rate of the Unruh–DeWitt detector [6, 7]. Landsberg
and Matsas [6] assert that since the result is not of a Planckian form, it is impossible to define
a temperature transformation law. Moreover, making different averages of the directional
temperature, the result is not consistent in order to define a universal temperature. Nevertheless,
first of all it has to be noted that if a black body is at rest in a frame, the particle number
density and the energy density around a frequency have not to be of a Planckian form in a
moving system. Indeed, the non-isotropy of the situation will forbid such a functional form.
On the other hand, what has to be conserved is the number of particles and the total energy
will indicate the way of transforming the energy from a relativistic mechanical point of view.
If such a transformation is adequate, a possible law of temperature may exist. If we integrate
equation (9) over all the frequencies and over the volume, the result is

N = V

∫ ∞

0
n(w, To, u) dw = 2ζ(3)

π2

(
To

h̄c

)3

, (10)

as expected [16] since the number of particles is the same no matter which frame we choose.
This last result is not in contradiction with Landsberg and Matsas [6], since it only describes the
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conservation of the particles. But if we analyse the energy rate, the result is quite surprising;
indeed, if we calculate the energy by integrating the particle number density multiplied by the
quantum of energy over all the frequencies and the volume, we obtain

E = V

∫ ∞

0
h̄wn(w, To, u) dw = 4

c
V σT 4

o γ 2

(
1 +

u2

3c2

)
. (11)

If we compare this result with the PE transformation law of the energy, we will note that it
coincides [2] since for the PE proposal E is given by

E = γEo

(
1 +

u2

3c2

)
, (12)

where Eo = 4
c
VoσT 4

o and noting that V = γ −1Vo. What we have demonstrated is that the PE
transformation law of the energy is consistent with the excitation rate of the Unruh–DeWitt
detector. Thus, it will always be possible to define a temperature transformation law which
coincides with the PE proposal.

Some hidden aspects in this theory have to be noted. First of all, we note that the energy
density is no longer an invariant. Indeed, since the isotropy has been lost, the pressure is
different from the third part of the energy density, ε. That is

ε = E

V
= γ 2Eo

Vo

(
1 +

u2

3c2

)
= γ 2

(
1 +

u2

3c2

)
εo. (13)

Since P = Po, this implies that

ε �= 3P and 3Po = εo = 4

c
σT 4

o . (14)

By using equation (13), we arrive at

ε = γ 2

(
1 +

u2

3c2

)
εo = γ 2

(
1 +

u2

3c2

)
4

c
σT 4

o . (15)

This would not imply that the temperature transformation law is not well defined, but that
the black-body radiation observed from a moving system is deformed in such a way that
Stefan–Boltzmann law is not satisfied due the lack of isotropy in this frame. The question now
is if the total energy and the energy density obtained in equations (12) and (13) represent good
candidates for a thermodynamical theory. Certainly E has been obtained from a relativistic
mechanical transformation of the total energy Eo, but, as in the nonrelativistic case [17], the
energy of the whole motion has to be eliminated; that is, in order to define a thermal energy
in kinetic theory, the averaged velocity of the system must be subtracted from the velocity of
each particle. This means the thermal energy is defined by

χ = 1
2m[−→v − −→u (−→r · t)]2, (16)

where −→u represents the averaged velocity of the system −→u (−→r , t) = 〈−→v 〉). Returning to
our problem, it is evident that we have not considered this aspect in the definition of the total
energy and consequently in the energy density . Thus, instead to deal both with the regular
energy and its energy density, it will be better to consider a thermodynamical function what we
will call the thermal energy ξ and its thermal energy density ς . This question will be analysed
in section 6, but as an intuitive deduction let us deal with the black-body situation. First of all,
let us accept the PE transformation law for the temperature and the heat to be valid. Secondly,
let us propose that the thermal energy and the thermal energy density are defined as follows:

ξ = E − W0→Eo
and ς = ξ

V
= ε − W0→Eo

V
, (17)
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where W0→Eo
represents the work which brings the black body in the moving frame from an

initial energy 0 to a final energy Eo (this last one measured in the rest frame). The energy
W0→Eo

will be called the bulk energy. To be able to calculate such a term it is necessary to
understand that during the process the velocity of the system is constant (−→u = −−→const). Using
the momentum of the whole black body which is equal to [2]

−→
G = 4

3
γEo

−→u
c2

. (18)

It is easy to obtain W0→Eo

W0→Eo
=

∫
−→u ◦ d

−→
G =

∫ Eo

0

4

3
γ

u2

c2
dEo = 4

3
γEo

u2

c2
. (19)

So returning to the thermal energy and the thermal energy density, we arrive at

ξ = E − 4

3
γEo

u2

c2
= γEo

(
1 +

u2

3c2

)
− 4

3
γEo

u2

c2
= γ −1Eo = γ −1ξo (20)

and

ς = γ −1Eo

γ −1Vo

= Eo

Vo

= εo = ςo.

With this definition of the thermal energy and the thermal energy density, we obtain a simple
transformation law. The question now is if this is useful from a thermodynamical point of view.
This will be analysed in section 5. It has to be pointed out that in the rest frame the definition
of regular and thermal energies coincide and that the specific variable, in this case the thermal
energy density ς, is an invariant. The Stefan–Boltzmann law can now be expressed as

ς = ςo = εo = 4

c
σT 4

o = 4

c
σγ 4T 4, (21)

and we can now ensure that

ς = 3P. (22)

It is interesting to note how the structure of thermodynamics is conserved. So with the use
of our thermal energy density, we recover a regular form for the expression of the black-body
radiation. If we look for the transformation law for the thermal energy, it coincides with
the AR proposal for the transformation of the energy. This encourages us to think that our
proposal has some sense. In section 5, we will generalize this idea for any system and we will
note that the method of subtracting the bulk energy will be related with the form invariance of
thermodynamics. This method will be called the renormalization of thermodynamics. Before
we generalize this concept, in section 5, we are obliged to demonstrate why the PE proposal
for transformation of the temperature is the correct one.

4. Free expansion of ideal gases

As we noted in the introduction, different proposals have appeared after the PE theory. First
of all, let us reproduce a table which describes the relativistic transformation laws for different
thermodynamical functions. We will partially reproduce a table presented by Balescu [14],
where just the five main proposals are kept and we anticipate our proposal.

It is interesting to note that the transformations for the volume (V ) are the same in all
of the cases except in the TR and LR proposals. This interesting difference will be widely
discussed in section 7, since the geometry of classical relativity and thermodynamics would
have to be revisited under this idea. The pressure (P ) and the entropy (S) are invariant in
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Table 1. Relativistic transformation laws for different proposals. N.R. means not reported. The
subscript o describes the variable in the proper system. PE: Planck–Einstein; O: Ott; L: Landsberg;
AR apparent Rohrlich; TR: true or covariant Rohrlich; LR: light Rohrlich and AA: Ares de Parga
and Angulo-Brown. Note that for the AA proposal the energy is substituted by the thermal energy.

a V P S T dQ E F

PE γ −1Vo Po So γ −1To γ −1 dQo γ
(
Eo + u2PoVo

c2

)
γ −1Fo

O γ −1Vo Po So γ To γ dQo γEo γFo

L γ −1Vo Po So To dQo Eo Fo

AR γ −1Vo Po So γ −1To N.R. γ −1Eo N.R.
TR γVo Po So γ To N.R. γEo N.R.
LR Vo Po So γ −1To N.R. γ −1Eo N.R.

ξ = E − γ (Eo + PVo)
u2

c2

a V P S T dQ ξ F
AA γ −1Vo Po So γ −1To γ −1dQo γ −1ξo = γ −1Eo γ −1Fo

all the proposals [14]. But for the internal energy, the expressions fundamentally differ in
the value of what we will call the Balescu parameter ‘a’. Nevertheless, for the temperature
(T ), the flux of heat (dQ) and the free Helmholtz energy (F ), the laws have a common form;
actually, we can always describe them as

� = γ a�o, (23)

where � maybe T , dQ or F and ‘a’ is the Balescu parameter [14] which as we noted before
for Planck–Einstein [1] is −1, for Ott [5] 1 and for Landsberg [4] 0.

Let us now apply these relations for the free adiabatic expansion of an ideal gas. First of
all, we recall that experimentally all gases behave in a universal way when they are sufficiently
diluted. The ideal gas is an idealization of this limiting behaviour and with it we can define
an absolute scale of temperature. For an ideal gas in its proper frame, we know that

PoVo = NoκTo, (24)

where Po, Vo,No, To and κ represent, respectively, the pressure, the volume, the number of
molecules, the temperature and the Boltzmann constant. If we use equation (1) and if we
consider that the volume transforms as

V = γ −1Vo, (25)

which is a consideration accepted for all the proposals described by table 1 except the TR and
LR proposals, we obtain

PV = Poγ
−1Vo = Noκγ −1To = Noκγ −1−aT , (26)

where N = No, since the number of molecules is conserved. If we use this last result for
calculating the entropy for an adiabatic free expansion with the invariance of the entropy, we
arrive at

Nκ ln
Vof

Voi

= �So = �S = Nγ −a−1κ ln
Vf

Vi

, (27)

where the subscripts i and f denote the initial and final states, respectively. Simplifying this
expression, we get

Vof

Voi

=
[
Vf

Vi

]γ −a−1

=
[
γVof

γVoi

]γ −a−1

=
[
Vof

Voi

]γ −a−1

. (28)
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It is clear that equation (28) is satisfied if

γ −a−1 = 1 �⇒ a = −1. (29)

We can now conclude, independently of the black-body case, that the Balescu parameter
a = −1 corresponds to the Planck’s [1] result. Until now, since the black-body and the
free expansion cases are compatible with the Balescu parameter a = −1, we can discard
the other transformation laws, that is the Ott and Landsberg ones. Nevertheless, it is
important to consider the following point: Balescu [14] claimed that ‘any of the generalized
thermodynamic formalisms can be reduced to Planck’s form-invariant formalism by means
of a gauge transformation of the temperature and the free energy’. It seems that the main
point of the problem consists in choosing the gauge which simplify the particular case we
are dealing, as in classical electrodynamics, the freedom of this gauge will be connected with
the convenience for dealing with a particular problem. Nevertheless, the deduction of the
Balescu parameter has been done by considering the general transformation given by equation
(23) and the only consistent choice was for the value a = −1. We have to emphasize that
only proposals which consider a = −1 could lead up to a consistency with thermodynamics
when equation (25) has also been considered. Thus, other proposals could be considered
provided that a different equation is used for the transformation of the volume as Rohrlich
done [10]. Indeed, the TR and LR proposals will give a congruent result in the sense that
if instead of using equation (25), we consider V ′ = γVo for TR and V = Vo for LR, after
repeating all of the above calculation for the free expansion gas, we would obtain a = 1 and
a = 0, respectively. So the point is: which is the good transformation for the volume? We
can conclude that this gauge transformation comes from correcting the volume transformation
and for this reason the invariance of the form disappears in such cases. We will discuss this
point in section 7.

5. Transformation for the Helmholtz free energy

As we noted for the black-body case (section 3), the so-called thermal energy represents a good
candidate for describing a thermodynamical system. But it is not just an artificial concept since
it comes from subtracting the energy of the motion of the system, which we call the bulk energy
of the system. Moreover, the PE proposal must apparently be modified in order to preserve
the invariance of the theory, otherwise some thermodynamic functions may be defined with a
dependence with respect to the motion of the system and some inconsistencies appear. Indeed,
we have pointed out this behaviour with respect to the energy density and the energy for the
black-body case, but not for a general situation. The so-called Helmholtz free energy being
a thermodynamical potential will permit us to demonstrate that the renormalization method
is appropriate for any situation when we are dealing with relativistic thermodynamics. Let
us recall the classical relation between the Helmholtz free energy F, the temperature and the
entropy [19]:

F = E − T S. (30)

We require that this last classical relation be preserved in order to obtain an invariant-form
relativistic thermodynamics. By using equation (23), and noting that the Helmholtz free
energy transforms as [14]

F = γ −1Fo, (31)

we obtain

E = γ −1(Fo + ToS) = γ −1Eo. (32)
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But if we review table 1, we note that for the PE proposal, the expression for the transformed
energy differs from the result of equation (32) and coincides with the other cases a = 0 and
a = 1, that is, for Landsberg and Ott’s proposals which have already been discarded. For TR
and LR proposals there is no contradiction provided that the corresponding transformation of
the volume has been considered, that is V = γVo and V = Vo, respectively. This is one of the
reasons why there exist such proposals. As in the black-body case, if we persist in keeping
the PE proposal, we will be obliged to modify the expression of the Helmholtz free energy.
So, we can conclude that the concept of regular energy has to be abandoned and substituted
by the thermal energy ξ and the thermal energy density ς in order to preserve the invariant
form of thermodynamics. Let us define in a general form the thermal energy ξ ,

ξ = E − W0→Eo
, (33)

where W0→Eo
represents the energy needed to bring the system from an energy 0 to Eo but

leaving u as a constant:

W0→Eo
=

∫ Eo

0

−→u ◦ d
−→
G =

∫ Eo

0

−→u ◦ d

[
γ (Eo + PVo)

−→u
c2

]
, (34)

where we have taken the classical result for the momentum of the system [2]:

−→
G = γ (Eo + PVo)

−→u
c2

, (35)

and considering that −→u is a constant, we arrive at

ξ = E − γ
u2

c2
(Eo + PVo). (36)

After a simple algebra considering the PE transformation for the energy, we obtain

ξ = γ

(
Eo +

u2

c2
PVo

)
− γ

u2

c2
(Eo + PVo) = γ −1Eo = γ −1ξo. (37)

We substitute E by ξ in equation (30), we arrive at

F = ξ − T S = γ −1Eo − γ −1ToS = γ −1(Eo + ToS) = γ −1Fo, (38)

and equation (31) is respected. For the thermal energy density ς , respecting the philosophy
of equation (17), the result is

ς = ξ

V
= γ −1ξo

γ −1Vo

= ξo

Vo

= ςo = εo. (39)

In fact, if we review the Balescu approach [14], one can note that our scheme of renormalizing
or of defining the thermal variables is equivalent to not considering the motion of the system
as a changing variable. Planck’s proposal is not congruent with the invariant form of
thermodynamics as was detected in equation (32). So our AA proposal (see table 1) modifies
the PE one just in the introduction of the thermal energy instead of the regular energy, leading
to an invariant-form relativistic thermodynamics. It has to be noted that Rohrlich [10] has
developed a similar proposal (AR) but with the inconvenience of being incomplete since it
does not express the transformation laws for the heat and the free Helmholtz energy.

Let us now define other thermodynamical functions as the ‘thermal’ work. Indeed if we
want the first law of thermodynamics to be valid, we need to define a ‘thermal’ work; that is,

dE = dQ − dW ⇒ dE − −→u ◦ d
−→
G = dQ − dW − −→u ◦ d

−→
G, (40)

and the ‘thermal’ work is

d	 = dW + −→u ◦ d
−→
G ⇒ dξ = dQ − d	. (41)
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It is very important to note two aspects; first of all that the ‘thermal’ work d	 transforms as

d	 = γ −1 d	o = γ −1 dWo, (42)

and secondly that the additional term used to define the thermal work, equation ( 41), coincides
with the exact differential described in equation (4),

−→u ◦ d
−→
G = d

[
γ (Eo + PVo)

u2

c2

]
. (43)

This is because u has to be considered as a constant. In the same order of ideas, it is interesting
to note that, as we comment in section 2, this exact differential does not produce any work
over a cycle. This was the main point in using FTT since it permitted us to analyse this exact
differential which leads us to the renormalization.

6. Constraint of the theory

First of all, it has to be pointed out that our problem has to be revisited with respect to
the simultaneity concept in relativity. Indeed if we are dealing with a thermodynamical
system where the process depends on time, we measure the volume Vo at a time to. In the
moving frame the measuring of the volume V at a time t corresponds to different times t ′o
and to in the proper frame and vice versa. For a time-dependent process, the temperature
changes during the process in the different frames. If we measure the temperature To at an
instant to , at two different points xo1 and xo2 in the rest frame, the corresponding events
(xo1, to, To) → (x1, t1, T1) and (xo2, to, To) → (x2, t2, T2), in the moving frame, would be
such that t1 �= t2 and T1 �= T2. Which will be the good temperature in the moving frame if the
temperature in the rest frame is, for any xo, the same To? That is, T = γ aTo corresponds to
the temperature at the moving frame at time t1 or t2 (T1 = T or T2 = T ). This is what we call
the simultaneity effect. Obviously, there is an indetermination which can be solved by means
of considering that the thermodynamical system is small enough to be able to approximate
t1 = t2.

We have to point out that until now all the processes in the different papers on this
matter have considered only equilibrium states which, as has been demonstrated by Pia and
Balescu [20], are Lorentz invariants; that is, the simultaneity difficulties do not appear. So
the AR, TR, LR and AA proposals are limited to small systems where the difference due to
the non-single definition of the thermodynamical functions can be negligible. This does not
represent an important problem since in reality what we are pursuing is the basic statements
for a relativistic hydrodynamics at a mesoscopic level.

Another point that has to be analysed is the way we can understand the relation of
the temperatures between different inertial systems. The law of transformation is not
transitive. Indeed let us consider two systems, K and K ′, with respect the rest frame Ko

of the thermodynamical system, with velocities with respect Ko, u and v, respectively. The
law of transformation is therefore T = γ −1

u To and T ′ = γ −1
v To, which does not imply

that T ′ = γ −1
v γuT . The good transformation of temperatures between frames K ′ and K is

T ′ = γ −1
w T , with w being the velocity between the frames K and K ′.

7. Rohrlich’s proposals

As we noted before, Rorhlich has proposed that the fundamental point of the relativistic
thermodynamical theory is to understand which transformation for the volume has to be used.
He proposed [10]

V = γ sVo, (44)
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where s will be called the Rohrlich parameter and it will be equal to −1 for the PE, AR and
AA proposals, 1 for the TR proposal and 0 for the LR proposal. If we reproduce all the
calculations for deducing the Balescu parameter using s = 1 or s = 0, we obtain a = 1 or
a = 0, respectively. The discussion is now which is the physical value of s. Since there is
a natural transformation of the volume in a covariant form for Rohrlich, the good value of
s is 1 (TR proposal). Furthermore, since the physical image of a system can be connected
with a photograph, the LR proposal, s = 0, is acceptable and it just consists of considering
the thermodynamical variables measured in the rest frame. The question of which is the
transformation for the volume that has to be accepted in relativistic thermodynamics can just
be answered within the concepts of measurement and invariance. Indeed, if we consider the
scalar behaviour of the product of the volume and the time, we have

dV dt = d4x, (45)

which is a relativistic invariant. Since the proper time has the particular meaning of being
the time where thermodynamic functions are measured in classical thermodynamics at a rest
frame, for this reason it is our point of departure. We know that

dt = γ dτ, (46)

where τ is the proper time.
Considering equation (45), this will obligate us to recognize the appropriate transformation

for relativistic thermodynamics as

dV = γ −1 dVo, (47)

leading us to consider that

V = γ −1Vo, (48)

when the dimension of a thermodynamic system permits us to neglect the simultaneity
effect. Consequently, with this constraint, we are able to deal with a well-defined relativistic
thermodynamics. We can conclude that renormalizing the PE proposal is the correct way of
describing relativistic thermodynamics. It always has to be considered that this theory will
just have a meaning if the system is sufficiently small compared with the speed of the moving
frame in order to neglect the simultaneity effect.

In order to go deeper into the invariance of the form in the AA proposal, it is interesting
to analyse the work realized by Rohrlich [10] with respect the PE proposal. He arrives to a
covariant form where the enthalpy of the system is used to define a relativistic vector which
explains the reason of the appearance of new terms in the energy among other results. Indeed,
as we noted in section 2, an exact differential in the transformation of the work will explain
an extra term in the transformation of the energy. Moreover, Staruszkiewicz [22] has shown
the covariant characteristic of the enthalpy in the sense that it defines a 4-vector as follows:

Hµ =
(

H, γHo

−→u
c2

)
=

(
E + PV, γ (Eo + PVo)

−→u
c2

)
, (49)

where H = E + PV represents the enthalpy. Using the transformation for the regular energy
E, it is straightforward to show that

Hµ = Hou
µ, (50)

where Ho represents the enthalpy in the rest frame and uµ is described by the 4-vector
relativistic velocity. Consequently, Hµ is a 4-vector. We note that the enthalpy transforms as

H = γHo. (51)
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Staruszkiewicz [22] has shown that

dH = d(E + PV ) = −→u ◦ d
−→
G + γ −1To dS + V dP, (52)

which is equal to

dH = −→u ◦ d
−→
G + T dS + V dP. (53)

From this, we can now renormalize the enthalpy by defining the thermal enthalpy � as follows:

d� = dH − −→u ◦ d
−→
G = T dS + V dP. (54)

We finally obtain

� = ξ + PV = γ −1(ξo + PVo) = γ −1(Eo + PVo) = γ −1�o = γ −1Ho. (55)

An important aspect of renormalizing thermodynamics is that the group of transformation is
reduced to a simple one: all the extensive thermodynamic functions transform as

�′ = γ −1�o (56)

which is due to the invariant characteristic of

�′ dt ′ = γ −1�oγ dτ = �o dτ. (57)

For the specific variables, we also obtain invariants; that is

φ = �′

V ′ = γ −1�o

γ −1Vo

= �o

Vo

= φo, (58)

as happened with the efficiency and the thermal energy density.

8. Concluding remarks

Finally, we want to emphasize the following three main points.
(A) It is a well-known result that the virial theorem for relativistic particles has the form

[21]:

E =
∑

a

mac
2

√
1 − v2

a

c2
⇒ T = γ −1To. (59)

Since temperature is always related with an average of the energy of the particles, it seems
that it is very intuitive and natural that the transformation law for the temperature has the
form described in equation (59). In fact, this can be the basis for a statistical treatment of the
relativistic ideal gas as a complementary deduction of what has been done by Jüttner [23] and
Balescu [14] with the additional introduction of the thermal energy described by our process
of renormalization.

(B) It is necessary to emphasize that the PE proposal of the transformation of the energy
is the source of other theories. Indeed, the O proposal respects a covariant model for the
transformation of the energy (see table 1). Nevertheless, it possesses the inconvenience of
not preserving the invariance of the form of thermodynamics. The reason is that it does
not consider equation (44) with s = 1, as Rohrlich has done. For the LR proposal, the
non-invariance came from considering equation (25) instead of equation (44) with s = 0.

In summary, if we want a relativistic thermodynamic theory with the fundamental
property of possessing invariant form, the Balescu parameter depends on the choice for
the transformation of the volume. That is, the correct option for s = 0 is the LR proposal; for
s = 1, the TR proposal and for s = −1, the AA proposal. Since classical thermodynamics
has been defined in the rest frame and naturally the measurement of the volume is realized by
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using the concept of simultaneity in this frame, we conclude that the AA proposal with the
constraint about the size of the system represents the best option.

(C) A natural renormalization has been done in order to preserve the invariance of the
form of thermodynamics. This renormalization is not only in the form but is needed for the
consistency of the theory since it is the only way of avoiding the problem presented in dealing
both with the energy and the Helmholtz free energy (equation (32)). The covariant form is
changed since instead of transforming quantities coming from a regular theory of relativity
(which are well defined but are inoperative from a thermodynamical point of view), the AA
proposal just deals with the invariance of the form exposed in equation (57).
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